Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

David A. Jay, ${ }^{\text {a }}$ Andrew Whiting, ${ }^{\text {a }}$ Dmitrii. S. Yufit, ${ }^{\text {a* }}$ Judith A. K.
Howard ${ }^{\text {a }}$ and Stephen Hermitage ${ }^{\text {b }}$
${ }^{\text {a }}$ Chemistry Department, University of Durham, South Rd, Durham DH1 3LE, England, and
${ }^{\text {b }}$ GlaxoSmithKline, Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, England

Correspondence e-mail:
d.s.yufit@durham.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.045$
$w R$ factor $=0.130$
Data-to-parameter ratio $=18.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

p-TolyIsulfonyl cyanide

The first crystal structure of a sulfonyl cyanide, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{~S}$, has been determined. The molecule has an unusual bond-length distribution, with a very long $\mathrm{S}-\mathrm{Csp}$ bond $[1.772$ (2) \AA] and a short S-Csp ${ }^{2}$ bond [1.7368 (17) \AA].

Comment

Herein we report the first example of the solid-state structure of a sulfonyl cyanide, (I).

(I)

Sulfonyl cyanides (1) are important functional groups since they are used as dienophiles in nitrile cycloaddition reactions, e.g. in aza-Diels-Alder reactions with cyclopentadiene (2) (see reaction Scheme below) to yield cycloadduct (3) after hydrolysis (Jagt \& van Leusen, 1974; Morgan et al., 1996). More recently, Lewis-acid-catalysed and asymmetric cycloaddition reactions have also been reported (Katagiri et al., 1996).

(a) $R=$ phenyl
racemic
(b) $R=$ benzyl
(c) $R=$ methyl
(d) $R=p$-chlorophenyl
(e) $R=p$-tolyl

The conformation of the molecule is the usual one for aryl sulfones (Kalman et al., 1981), with the CN group almost perpendicular to the Ph ring [torsion angle $\mathrm{C} 8-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$ is $\left.94.1(2)^{\circ}\right]$. However, in comparison with p-tolylsulfonylethyne (Tykwinski et al., 1993), the $\mathrm{S}-\mathrm{Csp}^{2}$ bond in (I) is much shorter (1.737 versus $1.757 \AA$) and the $\mathrm{S}-\mathrm{Csp}$ bond is significantly longer (1.772 versus $1.711 \AA$, respectively). This difference can be explained by a strong $\pi-\sigma^{*}$ interaction between the aromatic ring and the cyano group.

Received 15 January 2002
Accepted 21 January 2002
Online 31 January 2002

Figure 1
The molecular structure of (I) (displacement ellipsoids are at the 50% probability level).

Molecules of (I) form stacks in the crystal, with a significant lateral displacement between molecules (Figs. 2 and 3). The shortest intermolecular contact between atoms in the stack is $\mathrm{C} 2 \cdots \mathrm{C} 6(x, 3 / 2-y, 1 / 2+z)$, at 3.684 (2) \AA. The shortest contact between adjacent stacks $[\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1(2-x, 3 / 2+y, 1 / 2-z)$: $\mathrm{C} \cdots \mathrm{O}=3.409(2) \AA$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=138(2)^{\circ}$] corresponds to a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond.

Experimental

Tosyl cyanide (500 mg) was gently warmed in 300 ml of petroleum ether ($313-333 \mathrm{~K}$) which had been freshly distilled from calcium hydride. The warm solution was filtered and evaporated over a water bath in vacuo to give an extremely concentrated solution. Crystallization was effected by slow evaporation under reduced pressure.

Figure 2
Packing diagram viewed along the c axis.

Figure 3
The stacking of molecules of (I) viewed perpendicular to the aromatic ring plane.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{~S}$
$M_{r}=181.21$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=6.5810$ (4) A
$b=15.377$ (1) \AA
$c=8.3671(5) \AA$
$\beta=93.49$ (1) ${ }^{\circ}$
$V=845.15(9) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 6000
diffractometer
ω scans
Absorption correction: none
6296 measured reflections
2542 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.130$
$S=0.97$
2542 reflections
137 parameters
$D_{x}=1.424 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1807
reflections
$\theta=2.8-30.5^{\circ}$
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Prism, colourless
$0.40 \times 0.18 \times 0.10 \mathrm{~mm}$

1742 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=30.5^{\circ}$
$h=-8 \rightarrow 9$
$k=-21 \rightarrow 21$
$l=-11 \rightarrow 11$

All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.075 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.46$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters (${ }_{\mathrm{A}}{ }^{\circ}{ }^{\circ}$).

S1-O1	$1.4217(14)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.390(3)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.4234(14)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.387(2)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.7368(17)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.391(2)$
$\mathrm{S} 1-\mathrm{C} 8$	$1.772(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.394(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.132(2)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.503(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.387(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.382(2)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$121.38(9)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.22(16)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$111.51(9)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.33(17)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	$110.34(8)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.78(16)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 8$	$105.26(9)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$120.52(16)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 8$	$104.50(9)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7$	$120.70(16)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 8$	$101.49(8)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$121.17(16)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$121.88(16)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$118.62(17)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{S} 1$	$118.26(13)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$177.09(18)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$119.86(13)$		

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve
structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

DSY is grateful to the EPSRC for financial support. We also thank the EPSRAC and GlaxoSmithKline for a CASE studentship to DJ (GR/99314731).

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Jagt, J. C. \& van Leusen, A. M. (1974). J. Org. Chem. 39, 564-566.
Kálmán, A., Czugler, M. \& Argay, Gy. (1981). Acta Cryst. B37, 868-877.
Katagiri, N., Makino, M., Tamura, T. \& Kaneko, C. (1996). Chem. Pharm. Bull. 44, 850-852.
Morgan, P. E., McCague, R. \& Whiting, A. (1996). Chem. Commun. 15, 18111812.

Tykwinski, R. R., Williamson, B. L., Fischer, D. R., Stang, P. J. \& Arif, A. M. (1993). J. Org. Chem. 58, 5235.

